Содержание
История
Иридий был открыт в 1803 году английским химиком С. Теннантом одновременно с осмием, которые в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Теннант был первым среди нескольких учёных, кому удалось получить в достаточном количестве нерастворимый остаток после воздействия на платину царской водки и определить в нём ранее неизвестные металлы.
Происхождение названия
Иридий (др.-греч. ἶρις — радуга) получил такое название благодаря разнообразной окраске своих солей.
Нахождение в природе
Содержание иридия в земной коре ничтожно мало (10−7 % по массе). Он встречается гораздо реже золота и платины. Встречается вместе с осмием, родием, рением и рутением. Относится к наименее распространённым элементам. Иридий относительно часто встречается в метеоритах. Не исключено, что реальное содержание металла на планете гораздо выше: его высокая плотность и высокое сродство к железу (сидерофильность) могли привести к смещению иридия вглубь Земли, в ядро планеты, в процессе её формирования из протопланетного диска. Небольшое количество иридия было обнаружено в фотосфере Солнца.
Иридий содержится в таких минералах, как невьянскит, сысертскит и ауросмирид.
Добыча иридия
При высокой ценности металла, его количество на нашей планете ничтожно мало. Даже ценная платина не может посоревноваться с его редкостью. В природе в виде самородков чаще всего встречается с примесями других металлов, среди которых рутений, осмий, палладий или платина. В сочетании с этими металлами иридий образует ауросмириды, невьянскиты, осмиридий, сысертскиты. Россыпи иридия можно встретить в местах добычи меди и никеля. Также возможна его добыча из золотых россыпей.
Передовыми странами добытчиками считаются Канада, США, ЮАР, остров Тасмания, Новая Гвинея. Главный поставщик иридия на мировой рынок – ЮАР.
Большую роль в добыче металла играет то, сколько иридия производит ЮАР, а также рост или падение спроса на металл.
Места добычи
Химический элемент встречается в сплавовом виде в складчатых земных породах гор России, перетонитовых породах, расположенных в ЮАР, Кении, Южной Америке и т. д.
Где есть платина, там есть и иридий.
О характеристиках металла, как химического элемента:
Иридий обозначается символом | Ir |
Номер в таблице Менделеева | 77 |
Вес атома | 192,22 а.е.м. |
Степени окисления | От 1 до 6 (5 не входит) |
Плотность при комнатной температуре | 22,7 г/см^3 |
Плотность в жидком состоянии | 19,39 г/см^3 |
Плавление | При 2300 градусов по Цельсию |
Кипение жидкого иридия | При 45 градусах Цельсия |
Имеет кристаллическую решётку | Гранецентрированного куба |
Элемент встречается разных цветов, самый распространённый – белый – KIrF6, лимонный – IrF5, золотой – K3IrCl6, светло-зелёный – Na3IrBr6, розовый – Cs3IrI6, малиновый – Na2IrBr6, тёмно-синий – IrI3. Разнообразие цветов обусловлено наличием в иридии различных солей.
Кстати, название своё металл получил за счёт этого разноцветия. Ирида – это богиня радуги в греческой мифологии.
Получение
Основной источник получения иридия — анодные шламы медно-никелевого производства. Из концентрата металлов платиновой группы отделяют Au, Pd, Pt и др. Остаток, содержащий Ru, Os и Ir, сплавляют с KNO3 и КОН, плав выщелачивают водой, раствор окисляют Сl2, отгоняют OsO4 и RuO4, а осадок, содержащий иридий, сплавляют с Na2O2 и NaOH, плав обрабатывают царской водкой и раствором NH4Cl, осаждая иридий в виде (NH4)2[IrCl6], который затем прокаливают, получая металлический Ir. Перспективен метод извлечения иридия из растворов экстракцией гексахлороиридатов высшими алифатическими аминами. Для отделения иридия от неблагородных металлов перспективно использование ионного обмена. Для извлечения иридия из минералов группы осмистого иридия минералы сплавляют с ВаО2, обрабатывают соляной кислотой и царской водкой, отгоняют OsO4 и осаждают иридий в виде (NH4)2[IrCl6].
Свойства иридия
Физические свойства иридия достаточно внушительны. Это очень твердый, тяжелый металл, плохо поддающийся механической обработке. Температура плавления составляет 24660С, имеет достаточно высокую температуру кипения 44280С. Его твердость обуславливается плотностью-22,65 г/см3. При нагревании и обычной температуре он устойчив, при температуре до 1000С на все известные кислоты не реагирует. В присутствии хлоридов щелочных металлов при температуре 600-9000С порошок иридия может раствориться хлорированием. Вступает во взаимосвязь с F2, когда температура достигает 4500С. Свойства иридия не играют никакой биологической роли, он не является токсичным металлом, хотя некоторые его соединения очень ядовиты.
Показатели иридия:
- сплавы иридия с вольфрамом и торием используют, как металл для термоэлектрических генераторов; с другими металлами изготавливают топливные баки для космических аппаратов, термопар, термоэмиссионных катодов;
- в автомобильной промышленности применяют в свечах зажигания, что позволяет долго использовать их, хотя они и дорогие;
- находит свое применение в изготовлении перьев для чернильных ручек, на золотых перьях;
- иридий-192 успешно применяют в дефектоскопии, там, где генерирующие источники не могут быть применены, например, во взрывоопасной среде;
- интересно, что из иридия изготовлен эталон килограмма, так как сплав иридия с платиной обладает механической прочностью и не окисляется;
- находит применение в ювелирной промышленности, но цена неимоверно высока на такие украшения;
- изготавливают лабораторные тигли, чтобы проводить опыты с фтором, а также его агрессивными соединениями;
- делают высокопрочные, жаростойкие мундштуки для выдувания стекла.
Физические свойства
Иридий — тяжёлый серебристо-белый металл, из-за своей твердости плохо поддающийся механической обработке. Температура плавления — 2739 K (2466 °C), кипит при 4701 K (4428 °C). Кристаллическая структура — кубическая гранецентрированная с периодом а0=0,38387 нм; электрическое сопротивление — 5,3⋅10−8Ом·м (при 0 °C), и 2⋅10−7Ом·м (при 2300 °C); коэффициент линейного расширения — 6,5⋅10−6 град; модуль нормальной упругости — 538 ГПа; плотность при 20 °С — 22,65 г/см³, жидкого иридия — 19,39 г/см³ (2466 °С).
Изотопный состав
Природный иридий встречается в виде смеси из двух стабильных изотопов: 191Ir (содержание 37,3 %) и 193Ir (62,7 %). Искусственными методами получены радиоактивные изотопы иридия с массовыми числами 164-199, а также множество ядерных изомеров. Распространение получил искусственный 192Ir.
Химические свойства
Иридий устойчив на воздухе при обычной температуре и нагревании, при прокаливании порошка в токе кислорода при 600—1000 °C образует в незначительном количестве IrO2. Выше 1200 °C частично испаряется в виде IrO3. Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями. Свежеосажденная иридиевая чернь частично растворяется в царской водке с образованием смеси соединений Ir(III) и Ir(IV). Порошок иридия может быть растворён хлорированием в присутствии хлоридов щелочных металлов при 600—900 °C или спеканием с Na2O2 или BaO2 с последующим растворением в кислотах. Иридий взаимодействует с F2 при 400—450 °C, а c Cl2 и S при температуре красного каления.
Степень окисления иридия
Атомы иридия в соединениях имеют степени окисления 6, 5, 4, 3, 2, 1, 0, -1.
Степень окисления — это условный заряд атома в соединении: связь в молекуле
между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается
заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается,
то степень окисления положительная.
Ионы иридия
6+Ir
5+Ir
4+Ir
3+Ir
2+Ir
1+Ir
Ir 01-Ir
Валентность Ir
Атомы иридия в соединениях проявляют валентность VI, V, IV, III, II, I.
Валентность иридия характеризует способность атома Ir к образованию хмических связей.
Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании
химических соединений называются валентными электронами. Более обширное определение валентности это:
Число химических связей, которыми данный атом соединён с другими атомами
Валентность не имеет знака.
Квантовые числа Ir
Квантовые числа определяются последним электроном в конфигурации, для атома Ir эти числа имеют значение N = 5, L = 2, Ml = -1, Ms = -½
Соединения трёхвалентного иридия
- Ir2O3 — твёрдое тёмно-синее вещество. Малорастворим в воде и этаноле. Растворяется в серной кислоте. Получают при лёгком прокаливании сульфида иридия (III).
- IrCl3 — летучее соединение оливково-зелёного цвета. Плотность — 5,30 г/см³. Малорастворим в воде, щелочах и кислотах. При 765 °C разлагается на IrCl2 и хлор, при 773 °C на IrCl и хлор, а выше 798 °C — на составные элементы. Получают действием хлора на нагретый до 600 °C иридий.
- IrBr3 — оливково-зелёные кристаллы. Растворяется в воде, мало растворим в спирте. Дегидратируется при нагревании до 105—120 °C. При сильном нагревании разлагается на элементы. Получают взаимодействием IrO2 с бромоводородной кислотой.
- Ir2S3 — твёрдое коричневое вещество. Разлагается на элементы при нагревании выше 1050 °C. Мало растворим в воде. Растворяется в азотной кислоте и растворе сульфида калия. Получают действием сероводорода на хлорид иридия (III) или нагреванием порошкообразного металлического иридия с серой при температуре не выше 1050 °C в вакууме.
Соединения четырёхвалентного иридия
- IrO2 — чёрные тетрагональные кристаллы с решёткой типа рутила. Плотность — 3,15 г/см³. Малорастворим в воде, этаноле и кислотах. Восстанавливается до металла водородом. Термически диссоциирует на элементы при нагревании. Получают нагреванием порошкообразного иридия на воздухе или в кислороде при 700 °C, нагреванием IrO2*nН2О.
- IrF4 — жёлтая маслянистая жидкость, разлагающаяся на воздухе и гидролизующаяся водой. tпл 106 °C. Получают нагреванием IrF6 с порошком иридия при 150 °C.
- IrCl4— гигроскопичное коричневое твёрдое вещество. Растворяется в холодной воде и разлагается тёплой (водой). Получают нагреванием (600—700 °C) металлического иридия с хлором при повышенном давлении.
- IrBr4 — расплывающееся на воздухе синее вещество. Растворяется в этаноле; в воде (с разложением), диссоциирует при нагревании на элементы. Получают взаимодействием IrO2 с бромоводородной кислотой при низкой температуре.
- IrS2 — твёрдое коричневое вещество. Малорастворим в воде. Получают пропусканием сероводорода через растворы солей иридия (IV) или нагреванием порошкообразного металлического иридия с серой без доступа воздуха в вакууме.
Соединения шестивалентного иридия
- IrF6 — жёлтые тетрагональные кристаллы. tпл 44 °C, tкип 53 °C, плотность — 6,0 г/см³. Под действием металлического иридия превращается в IrF4, восстанавливается водородом до металлического иридия. Получают нагреванием иридия в атмосфере фтора в трубке из флюорита. Очень сильный окислитель, способный окислить даже воду:
2IrF6 + 10H2O = 2Ir(OH)4 + 12HF + O2, или NO:
NO + IrF6 = NO+[IrF6]-
- IrS3 — серый, малорастворимый в воде порошок. Получают нагреванием порошкообразного металлического иридия с избытком серы в вакууме. Строго говоря. не является соединением шестивалетного иридия, так как содержит связь S-S.
- Ir(OH)4 (IrO2*2H2O) образуется при нейтрализации растворов хлороиридатов(IV) в присутствии окислителей. Осадок Ir2O3*nН2О выпадает при нейтрализации щёлочью хлороиридатов (III) и легко окисляется на воздухе до IrO2. Практически нерастворим в воде.
Радуга металла
Открыл металл и дал ему название англичанин С. Теннант, химик. Производя опыты с самородной платиной, химик исследовал и растворы, оставшиеся от опытов. И не зря — в них он обнаружил разноцветные соли неизвестного элемента.
Иридий назвали в честь радуги (по-гречески iris ) — многоцветного чуда.
Это не о цвете металла, это о разнообразии цветов иридиевых солей:
- K3IrCl6, IrF6 — золотисто-желтые кристаллы;
- KIrF6 — белые кристаллы;
- Ir2O3 — синие, сине-черные кристаллы:
- IrCl2 — зеленые кристаллы;
- Na2IrBr6 — малиновый цвет.
Есть соединения иридия, окрашенные в оливковый, коричневый, розовый, золотистый цвета.
Особенности
Сразу стоит сказать, что иридий — это металл. Потому он имеет все те свойства, которые типичны и для иных металлов. Такой химический элемент обозначается сочетанием латинских символов Ir. В таблице Менделеева он занимает 77 клетку. Открытие иридия произошло в 1803 году, в рамках того же исследования, при котором английский ученый Теннант выделил и осмий.
Исходным сырьем для получения таких элементов послужила руда платины, доставленная из Южной Америки. Первоначально металлы выделили в виде осадка, который «не брала» «царская водка». Исследование показало наличие нескольких ранее неизвестных веществ. Свое словесное обозначение элемент получил потому, что его соли выглядят, как будто переливающиеся радугой.
Содержание иридия в природе исключительно мало, и это одно из самых редких веществ на Земле.
Химически чистый иридий не имеет никакого радужного окраса. Зато для него характерен довольно привлекательный серебристо-белый цвет. Токсические свойства не подтверждены. Однако отдельные соединения иридия могут представлять опасность для человека. Особенно ядовит фторид этого элемента.
Производством и аффинажем иридия занимается ряд российских и зарубежных предприятий. Почти весь выпуск этого металла — продукт побочной обработки платинового сырья. Хотя иридий и не пурпурный, он содержит в природном виде 2 изотопа. 191-й и 193-й элементы стабильны. Но выраженные радиоактивные свойства зато имеет ряд искусственно получаемых изотопов, их период полураспада невелик.
Применение
Особый интерес в качестве источника электроэнергии вызывает его ядерный изомер иридий-192m2 (период полураспада 241 год).
Сплавы с W и Th — материалы термоэлектрических генераторов, с Hf — материалы для топливных баков в космических аппаратах, с Rh, Re, W — материалы для термопар, эксплуатируемых выше 2000 °C, с La и Се — материалы термоэмиссионных катодов.
Иридий используется также для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера.
Иридий в палеонтологии и геологии является индикатором слоя, который сформировался сразу после падения метеоритов.
Иридий, наряду с медью и платиной, применяется в свечах зажигания двигателей внутреннего сгорания (ДВС) в качестве материала для изготовления электродов, делая такие свечи наиболее долговечными (100—160 тыс. км пробега автомобиля) и снижая требования к напряжению искрообразования. Первой компанией, которая стала использовать иридий, улучшив благодаря этому качество свечей зажигания, стала японская компания NGK. Изначально использовался в авиации и гоночных автомобилях, затем, по мере снижения стоимости продукции, стал употребляться и на массовых автомобилях. В настоящее время такие свечи доступны для большинства двигателей, однако являются наиболее дорогими.
Иридий-192 является радионуклидом с периодом полураспада 74 суток, широко применяемым в дефектоскопии, особенно в условиях, когда генерирующие источники не могут быть использованы (взрывоопасные среды, отсутствие питающего напряжения нужной мощности).
Платиноиридиевый сплав обладает большой механической прочностью, не окисляется. Из этого сплава, в частности, изготовлен эталон килограмма.
В 2013 году иридий впервые в мире был применён в изготовлении официальных монет Национальным банком Руанды, который выпустил монету из чистого металла 999-й пробы. Иридиевая монета была выпущена номиналом 10 руандийских франков.
Промышленность
Свойства металла обусловили сферы применения промышленным комплексом:
- Из иридия делают посуду, оборудование, катализаторы для предприятий химического комплекса.
- В иридиевых тиглях выращивают монокристаллы.
- У автопрома это материал электродов (с медью и платиной) свечей зажигания. Они служат дольше, используются для элитных автомобилей.
- Сплавы иридия с рутением содержат электрогенераторы, термопары для измерения температур до 2000°C.
- Это индикатор качества сварных швов изделий из стали и сплавов алюминия.
Из платиново-иридиевого сплава изготовлены эталоны килограмма и метра (находятся в Париже).
Космические перспективы открыло третье тысячелетие:
- Компания American Elements создала технологию отливки бесшовных иридиевых колец для использования на спутниках, космических аппаратах (2006 год).
- Металл присутствует в дисплеях компьютеров, телевизоров, айфонов, других гаджетов на основе органических светодиодов (технология OLED).
Как источник энергии рассматривается ядерный изомер иридия-192 со временем «жизни» более 240 лет.
Медицина
Из сплава платины с иридием изготовлен хирургический инструментарий, детали кардиостимуляторов.
Это базис для развития ядерной медицины. Радионуклидное сырье получают на ядерных реакторах, циклотронах. 90% уходит на экспорт.
Россия входит в мировую топ-пятерку производителей сырьевых медицинских изотопов.
Иридий-192 задействован при дефектоскопии и онкологами (гамма-нож).
Сказочные перспективы иридия в медицине
В кардиостимуляторах применяется сплав иридий-платина.
Онкологи используют изотоп иридия Ir-192 как источник гамма-излучения. Его применяют для лечения рака груди и предстательной железы (на ранних стадиях болезни).
Разработаны методы лечения эпилепсии, болезни Паркинсона, шизофрении с помощью введения иридиевых электродов в мозг. Радужные перспективы для создания протезов глаза и слухового аппарата открывает метод вживления микроэлектродов.
Ювелирное дело
Ювелиры ценят металл за прочность, используя в сплаве с платиной.
Американская компания Smithson Tennant первой наладила производство ювелирных украшений из иридия. Иридиевые обручальные кольца позиционируются ею как вечные в буквальном смысле: бессильны даже концентрированная кислота и время. Им не требуется особый уход и условия хранения.
Украшения из сплавов с добавлением иридия и через десятилетия выглядят как купленные только что.
Драгоценности с иридием (даже обручальные кольца) не изнашиваются, всегда выглядят как новенькие. Это преимущество особо важно для изделий, испытывающих повышенные нагрузки (обручальные кольца, перстни, браслеты).
Другие сферы
Иридий почитают геологи и палеонтологи: это маркер возраста слоев земной коры и вымерших организмов.
Единственную в мире монету – проба иридия 999 – выпустил в 2013 году Национальный Банк Руанды (государство на востоке Африки). Номинал составил 10 местных франков.
До 1980-х годов шариком из иридиевых сплавов снабжали перья авторучек класса люкс, включая легендарный Parker 51. Это атрибут элиты и аксессуар фаната роскоши Джеймса Бонда.
Биологическая роль
Не играет никакой биологической роли. Металлический иридий неядовит, но некоторые соединения иридия, например, его гексафторид (IrF6), очень ядовиты.
Иридий — 77 элемент таблицы Менделеева
Атомная масса элемента №77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия – частого спутника самородной платины. Самородного иридия в природе нет.
Иридий – серебристо-белый металл, очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см3, а плотность его постоянного спутника – осмия, второго по тяжести 22,61 г/см3. Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.
Естественное свойство иридия (он же платиноид!) – высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента №77.
Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl2, IrCl3 и IrCl4. Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600°C. Единственное галоидное соединение, в котором иридий шестивалентен, – это фторид IrF6. Тонкоизмельченный иридий окисляется при 1000°C и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.
Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например [Ir(NН3)6]Cl3 и соли с комплексными анионами, например K3[IrCl3] · 3H2O. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.
Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина, осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям «Родий», «Осмий» и «Платина».
Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.
Искусственный иридий
Иридий, как и многие другие металлы крайне редкий, но очень ценный и широко используемый металл. Спрос на такие металлы только нарастает, а их количество природе уменьшается и к большому сожалению человечества не возобновляется. В связи с этим в мире большие обороты набирает искусственный синтез драгоценных металлов. Для этого создаются целые компании и лаборатории. Самой передовой и успешной технологией искусственного синтеза драгметаллов, которую только начинают внедрять является холодная ядерная трансмутация. Этот способ признан в мире и сегодня с его помощью синтезируется искусственная платина. Над остальными металлами проводятся работы. На территории России искусственным синтезом занимается компания «Синтезтех».
Интересные факты
Соли иридия очень разнообразны по окраске. Так, в зависимости от числа присоединившихся атомов хлора, соединение может иметь медно-красный, темный зеленый, оливковый или коричневый цвета. Дифторид иридия окрашен в желтый тон. Соединения с озоном и бромом имеют синюю окраску. У чистого иридия коррозионная стойкость очень велика даже при нагреве до 2000 градусов.
В породах земного происхождения концентрация иридиевых соединений очень невелика. Серьезно повышается она только в породах метеоритного происхождения. Такой критерий позволяет исследователям установить важные факты о различных геологических структурах. Всего на земле производится лишь несколько тонн иридия.
Модуль Юнга (он же модуль продольной упругости) у этого металла — на втором месте среди известных веществ (больше — только у графена).
- https://chem.ru/iridij.html
- https://mysamocvet.ru/metally/iridij/
- https://ProDragmetally.ru/dragotsennye-metally/iridij.html
- http://himsnab-spb.ru/article/ps/ir/
- https://metallsmaster.ru/iridij/
- https://k-tree.ru/tools/chemistry/periodic.php?element=Ir
- https://TheMineral.ru/metally/iridij
- https://vplate.ru/metally-i-splavy/vse-ob-iridii/
- https://jgems.ru/metally/iridij
- https://calcsbox.com/post/iridium.html